
Comparison of LSTM, GRU and Hybrid Architectures for usage
of Deep Learning on Recommendation Systems

Mario Toledo
Instituto de Pesquisas Tecnológicas do Estado de São Paulo

(IPT-SP)

Marcelo Rezende
Instituto de Pesquisas Tecnológicas do Estado de São Paulo

(IPT-SP)

ABSTRACT
This article shows the results of a performance analysis from LSTM,
GRU and Hybrid Neural Network architectures in Recommendation
Systems. To this end, prototypes of the networks were built to be
trained using data from the user’s browsing history of a streaming
website in China. The results were evaluated using the metrics
of Accuracy, Precision, Recall and F1-Score, thus identifying the
advantages and disadvantages of each architecture in different
approaches.

CCS CONCEPTS
• Computing methodologies; •Machine learning; • Learning
paradigms; • Supervised learning;

KEYWORDS
Neural Networks, RNN, LSTM, GRU, Recommendation Systems

ACM Reference Format:
Mario Toledo and Marcelo Rezende. 2020. Comparison of LSTM, GRU and
Hybrid Architectures for usage of Deep Learning on Recommendation
Systems. In 2020 The 4th International Conference on Advances in Artificial
Intelligence (ICAAI 2020), October 09–11, 2020, London, United Kingdom.ACM,
New York, NY, USA, 7 pages. https://doi.org/10.1145/3441417.3441422

1 INTRODUCTION
Recommendation Systems (RS) aim to suggest items that may be
relevant to the user according to their preferences [1]. However,
when trying to recommend items to a user for which there is no
prior information, the Recommendation Systems can generate rec-
ommendations that do not relate to the user’s profile of interest or
generate no recommendation at all. This type of problem is identi-
fied as Cold-Start Problem, appearing frequently in studies related
to Recommendation Systems [1-5].

A possible and alternative way to deal with the Cold-Start Prob-
lem is to ask the user to rate items in the start of the system‘s usage
[6], or forcing the user to answer questions or force this user to
answer questions that allow them to be associated with stereotypes
or other sets of users (such as demographics or age data, for ex-
ample). However, this might create an insatisfaction with the user,

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ICAAI 2020, October 09–11, 2020, London, United Kingdom
© 2020 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-8784-2/20/10. . . $15.00
https://doi.org/10.1145/3441417.3441422

who might have a minimal effort to use the system and may answer
the questions incorrectly.

One of the solutions adopted to deal with the Cold-Start Problem
is the use of the user’s browsing history for recommendation. For
example, if a page X is accessed frequently before users access the
page Y page, then the page Y is more relevant to be recommended
to users who accessed the page X.

Considering the sequential format of the browsing history, and
the pattern recognition for recommendation, Recurrent Neural
Networks has been suggested as an alternative to this problem in
studies like [7-13]. Each of these studies uses a specific architecture
or proposes a new kind of RNN, evaluating the results and checking
the recommended items generated.

The LSTM architecture appears in most of the studies. Kong,
Li and Lv [10] specifies that this model out for the possibility of
making predictions with long time intervals, standing out over the
other Recurrent Neural Networks in relation to the dependence of
long data streams. Fu et. al. [11] proposes a new architecture for
LSTM, and shows that the model can be evaluated by the metrics
of Accuracy, Recall, Precision and F1-Score. But both [10] and [11]
compare their models with standard LSTM architectures.

According to Korataev and Lyadova [8], the GRU architecture are
shown to be simpler and less redundant than Long Term Memory
Networks, with their training time reduced between 20% to 30%.
Although there are demonstrations that there is no difference in
quality depending on how the LSTM are initialized, the GRU still
guarantee superior performance. However, this study does not
make any comparison by the usage of metrics with other models.

Ruocco, Skrede and Langseth [12] proposes a model that uses
two GRU with the proposal of processing the current session of a
user in a Recurring Neural Network and then processing the session
history of the same user in a second Recurring Neural Network.
Thus, the second Recurrent Neural Network acts as a hidden layer
of the first. The model was evaluated using the metrics of Recall
and Reciprocal Classification Average, in addition to comparison
with other recommendationmodels, including traditional Recurrent
Neural Networks.

Anil et. al. [13] evaluates the best architecture to transform
analyzes into evaluations for a product recommendation system
through tests on three models of Recurring Neural Networks: LSTM,
GRU and a Hybrid Network that unifies both to identify the benefits
of such architecture. Such an experiment showed that the three
Recurrent Neural Networks are comparable in terms of Accuracy,
but the hybrid solution, which unifies a LSTM and a GRU, is more
accurate with less loss, while the time to train it is lesser than the
other tested architectures. But the study of Anil et. al. [13] does
not specifies that kind of metrics were used to compare all kinds of
networks.

https://doi.org/10.1145/3441417.3441422
https://doi.org/10.1145/3441417.3441422


ICAAI 2020, October 09–11, 2020, London, United Kingdom Mario Toledo and Marcelo Rezende

However, all these studies do not identify which Recurrent Neu-
ral Network architecture perform better within in the context of
Cold-Start Problem or what are the advantages and disadvantages
among the other architectures. Taking this into consideration, this
article shows the results of a performance analysis between LSTM,
GRU and Hybrid Networks architectures, frequently identified in
other researches related to the context of using the user session
data to generate recommendations.

In order to identify the architecture and variables that has the
best performance for this kind of situation, prototypes were built
based on each of the architectures, using the same database as an
input, obtained through a public database of a Chinese website of
live streaming [11], and evaluating the results from the metrics of
Accuracy, Recall, Precision and F1-Score used in [11].

2 METHODOLOGY
The experiment had different stages. Firstly, the data went through
an analysis process, identifying the peaks of access and the cases
that may interfere with the final results of this work. From the
analysis, the data was adapted for the execution of the prototypes,
divided into a base for training and another for testing. Then, the
construction of the prototypes was carried out based on the data
collected through the State of the Art, defining the input parame-
ters for each one and the specific parameters of each architecture.
Finally, the three prototypes were executed independently using
the adapted data and generating their results in specific directories.

The data used in this experiment represents the browsing history
of a Chinese live streaming website, as used in the work of [11] and
made publicly available through the Kaggle website. Each line of
the data file represents a user’s navigation sequence, containing
numeric identifiers for each page visited in chronological order. To
analyze the data, a script was created, using the Python language
in version 2.7.15, in order to quantify the page accesses per user
and the frequency of access. This script was executed on an Ubuntu
version 18.04.2 LTS system with 16 GB of RAM and an Intel Core
i7-7700 processor.

The purpose of this script is to count and group the values of
metrics that allow data analysis before adapting them. Iteratively,
each line of the file was processed, accounting for the number of
sessions per user, total pages visited by all users and the number of
pages visited per session. In addition, the frequency in which a page
is accessed and the number of times a user accesses the same page
was also considered. Then, the average number of hits per user was
calculated, alongside the highest frequency of hits on a single page,
the lowest frequency of hits on a single page, the largest sequence
of pages that a user accessed and the lowest sequence of pages that
a user accessed.

In total, the data file accounts for 1,806,204 lines representing
unique users, 18,927,700 page accesses and 453,423 distinct pages
accessed. The number of accesses varies between 1 and 1,060 pages
in the same session, with an average of 10 different accesses for
each user, in which the least visited page had at least 1 user access
and the most visited had 341,471 users.

To calculate the frequency of accesses for each page, the number
of times each page was accessed was counted, and then the number
of pages per number of accesses was grouped. In order to calculate

the frequency of users by the number of accesses per page, the
number of pages accessed by each user was counted, and then, the
number of users was grouped by the number of accesses per page.

Considering that sessions with access to a single page have no
value for this research, since such sessions have no learning value
in relation to the user’s trajectory to the destination page, they
were discarded from the entry base. Therefore, only sessions that
have at least two pages accessed by the same user were considered.

In addition to removing the strings with only a single access
from the same user, there was no need for other changes to the
input data for use in the prototypes. Initially, the data were divided
into two groups containing 80% of the data for the training base
and 20% for the test base.

To build the prototypes, the Keras library [12] was used along-
side the Python language on version 2.7.15, running on an Ubuntu
18.04.2 LTS with 16 GB of RAM and an Intel Core i7-7700 processor.

Considering the Recurring Neural Network architectures to be
used in this experiment, a script was created to train a LSTM Net-
work, a GRU Network and a Hybrid Network that would unify both
models.

The data was downloaded into a text file and then was read in the
model. Each line of the input file was separated into two datasets,
where the set X represented the sequence of pages traversed by
each user and the set y represented the last page accessed by each
user. Then, the data was transformed using the One-Hot Encoding
algorithm, allowing the use of categorical data as numeric data. In
this process, the number of strings and the number of pages ac-
cessed were stored for identification, such as the size of the number
of sentences and the size of the system’s vocabulary for comparison
in the results.

In the prototype using the LSTM architecture, a sequential model
with three layers was created: a Long Term Memory layer with 128
units, a Dense layer with activation from the linear function a(x) =
x and an activation layer varying the activation function used, as
described in Table 1

In the prototype using the GRU architecture, a sequential model
with three layers was also created: a layer of Recurring Blocking
Units with 128 units, a Dense layer with activation from the linear
function a(x) = x and an activation layer varying the activation
function used, as described in Table 2

In the prototype using the hybrid architecture, a sequential model
with four layers was created: a layer of LSTMwith 128 units, a layer
of GRU with 128 units, a Dense layer with activation from the linear
function a(x) = x and an activation layer varying the activation
function used, as described in Table 3

Table 4 shows the variables and the set of values used during the
experiment of this work. These valueswere taken into consideration
from the values used by studies in [7-13], also considered base
values for each of the used variables.

In total, 108 experiments were generated from the combination
of variables. The prototypes were executed simultaneously, training
the 3 network architectures at the same time. Performance during
training of the networks varied according to the architecture used
and the input parameters. The LSTM and GRU networks had equiv-
alent training times, while the hybrid network took longer to finish
its execution. Likewise, an increase in the execution time of each
period of the networks was noticed with the change in the size of



Comparison of LSTM, GRU and Hybrid Architectures for usage of Deep Learning on Recommendation Systems ICAAI 2020, October 09–11, 2020, London, United Kingdom

Figure 1: Left image: the frequency of visits to each page by the number of times the page was accessed. Right image: frequency
of visits to each page by the number of users.

Table 1: LSTM prototype architecture

Layer Input Output
Input Layer (None, 40, 4862) (None, 40, 4862)
LSTM (None, 40, 128) (None, 128)
Dense (None, 128) (None, 4862)
Activation (None, 4862) (None, 4862)

Table 2: GRU prototype architecture

Layer Input Output
Input Layer (None, 40, 4862) (None, 40, 4862)
GRU (None, 40, 128) (None, 128)
Dense (None, 128) (None, 4862)
Activation (None, 4862) (None, 4862)

Table 3: Hybrid prototype architecture

Layer Input Output
Input Layer (None, 40, 4862) (None, 40, 4862)
GRU (None, 40, 4862) (None, 128)
LSTM (None, 40, 128) (None, 128)
Dense (None, 128) (None, 4862)
Activation (None, 4862) (None, 4862)

Table 4: List of variables and values used in this experiement

Variable Values
Activation Function softmax, tanh and sigmoid
Optimizer SGD, Adam, RMSProp and Adagrad
Batch Size 64, 128, 256
Epochs 20, 50, 100



ICAAI 2020, October 09–11, 2020, London, United Kingdom Mario Toledo and Marcelo Rezende

Figure 2: Graphic representation of the general average of the metrics

Figure 3: Graphic representation of the metrics by activation function and architecture.

the batch, while the parameters such as activation function and
optimizer had low variation in terms of performance during the
training.

3 RESULTS
From the results generated, the general average of each of the
evaluation metrics was calculated, as shown in Figure 1. The data
demonstrated a greater generalization of the GRU architecture as
for the other variables in the model, having a good performance in a
greater number of scenarios than the other architectures, while the
Hybrid Network architecture had a good performance in a smaller
number of scenarios.

Grouping the results by the activation function, it is possible to
analyze the performance of the architectures from the functions

used in training the model of this experiment. Figure 2 shows that
the softmax function presents better performance compared to the
other functions used, while the hyperbolic tangent had the lowest
performance among the other functions used.

When analyzing the results from the number of epochs used, it is
clear that the greater the number of epochs, the greater the quality
of the results. This happens regardless of the other parameters used,
but the value has little influence on increasing the values of the
metrics, slightly improving the results, as described in Figure 4

The optimizers were the values that most influenced the evalu-
ated metrics. The results with higher values are related to the use of
the RMSProp optimizer, especially when used in conjunction with



Comparison of LSTM, GRU and Hybrid Architectures for usage of Deep Learning on Recommendation Systems ICAAI 2020, October 09–11, 2020, London, United Kingdom

Figure 4: Graphics representation of the metrics by number of epochs and achitecture

Figure 5: Graphic representation of the metrics by optimizer and architecture

the GRU architecture. However, the results related to the LSTM ar-
chitecture combined with the use of the RMSProp optimizer showed
higher results when a smaller batch size was used.

The Adam and Adagrad optimizers proved to be strongly linked
to the use of the number of epochs used, where the greater the
number of epochs, the greater the values of the metrics evaluated.
However, when compared to each other, Adam presents higher

values of the metrics evaluated in relation to Adagrad. The experi-
ments that used the SGD optimizer had the lowest results regardless
of the architecture used, as described in Figure 4

The variation in the batch size showed different behaviors in the
evaluated results, according to the values used as input parameters.
When using the LSTM architecture with the RMSProp optimizer,
the analyzed metrics decreased as the batch size increased, while
the use of the GRU architecture had little impact on the results



ICAAI 2020, October 09–11, 2020, London, United Kingdom Mario Toledo and Marcelo Rezende

Figure 6: Graphic representation of the metrics by batch size and architecture

using the same parameters. However, the use of other optimizers
from the same parameters, varying the batch size, had the same
behavior regardless of the architecture used, as described in Figure
5

When analyzing the results from the network architecture used,
we can see a superior performance of the GRU architecture, obtain-
ing higher values of Accuracy and F1-Score with greater frequency
compared to other architectures. The LSTM architecture is superior
in specific cases, while the Hybrid Network does not demonstrate
superior performance in any case if compared using the mentioned
evaluation metrics.

However, the performance of the architectures varies according
to the combination of the parameters used. The GRU architecture
has higher values of Accuracy and F1-Score when used in conjunc-
tion with the RMSProp optimizer and softmax activation function,
also having higher values according to the batch size. In other
words: the higher batch size when using GRU Networks together
with the RMSProp optimizer, the better its performance will be.

Likewise, the LSTM architecture had a superior performance
when compared to the other networks when used in conjunction
with the sigmoid activation function and the RMSProp optimizer,
regardless of the batch size of the in these cases.

4 CONCLUSION
From the results obtained, in general, the results show a better
performance of the architecture of Recurring Blocking Units inmost
scenarios compared to the other two architectures. While the Recall
measurement appears with similar values in most scenarios for the
three architectures, the Accuracy and Precision measurements are
considerably higher when using GRU, resulting in a higher F1-Score.
The Hybrid model, on the other hand, presented lower results than
other architectures between all the evaluation metrics.

It was also possible to identify the performance of the architec-
tures from the variables used in the model. The softmax function
proved to be more effective than the other activation functions used
in the model, obtaining high Accuracy and Precision values when
used, while the hyperbolic tangent function had significantly lower
results than the other activation functions.

Likewise, the use of the RMSProp optimizer ensured superior
results to the other optimizers, while the use of SGD yielded inferior
results to the others obtained. The variation in the number of epochs
used in the training of the models, on the other hand, improved
as the variable grew, while the change in the batch size had little
influence on the results.

When compared to the results of the works reviewed in the
State of the Art of this research, the results obtained through the
execution of the built prototypes were superior to the others when
specific combinations of parameters were used. It was possible to
observe that the works reviewed in the State of the Art did not
mention the use of optimizers in their models, while the variation
of optimizers during the training of the networks of this research
showed a great difference in the increase of the metrics evaluated.

Within the context of this experiment, the use of GRU, combined
with the use of RMSProp as the optimizer and the use of softmax
as the activation function, is suggested for use of the browsing
history as an alternative to Recommendation Systems in a Cold-
Start Problem situation, as a result of its performance observed in
the results compared to the architectures identified in the works as
those of [7-10].

For future works, it is recommended to modify the variables used,
being able to add new values or add new variables to the model in
order to improve it. In addition to the stipulated variables, other
Recurrent Neural Network architectures can be tested under the
same conditions as the experiment in this work in order to verify
their performance regarding the architectures used. In particular,



Comparison of LSTM, GRU and Hybrid Architectures for usage of Deep Learning on Recommendation Systems ICAAI 2020, October 09–11, 2020, London, United Kingdom

the use of other optimizers from the standard values suggested by
the authors since they were shown to have a greater influence on
the quality of the results.

In addition, other databases containing the user’s browsing his-
tory can be tested on the model, varying the size, the number of
strings or the last state of the user’s session. Different databases
can be used to identify changing results according to the context
of the input database.

REFERENCES
[1] Deng, S., Huang, L., and Guandong, X. 2014. Social network-based service rec-

ommendation with trust enhancement. Expert Systems with Applications 41,
8075—8084. DOI= http://dx.doi.org/10.1016/j.eswa.2014.07.012.

[2] Nadimi-Shahraki, M., Bahadorpour, M. 2014. Cold-start Problem in Collabo-
rative Recommender Systems: Efficient Methods Based on Ask-to-rate Tech-
nique. Journal of Computing and Information Technology, 22, 105-113. DOI=
https://doi.org/10.2498/cit.1002223.

[3] Gomes-Uribe, C., Hunt, N. 2015. The Netflix recommender system: Algorithms,
business value. ACM Trans. Manage. Inf. Syst., 6. DOI= http://dx.doi.org/10.1145/
2843948.

[4] Shah, K., Sakunke, A., Dongare, S., and Antala, K. 2017. Recommender Systems:
An overview of different approaches to recommendations. International Confer-
ence on Innovations in Information, Embedded and Communication Systems
(ICIIECS). DOI= https://doi.org/10.1109/ICIIECS.2017.8276172.

[5] Pandey, A. and Rajpoot, D. 2016. Resolving Cold Start problem in recommendation
system using demographic approach. 2016 International Conference on Signal
Processing and Communication (ICSC). DOI= https://doi.org/10.1109/ICSPCom.

2016.7980578.
[6] Masthoff, J. 2011. Group Recommender Systems: Combining Individual Models.

Recommender Systems Handbook, 21, 677-702. DOI=https://doi.org/10.1007/978-
0-387-85820-3_21.

[7] Tan, Y., Xu, X., and Liu, Y. 2016. Improved Recurrent Neural Networks for Session-
based Recommendations. 2016 Proceedings of the 1st Workshop on Deep Learn-
ing for Recommender Systems. DOI= https://dl.acm.org/doi/10.1145/2988450.
2988452.

[8] Korotaev, A. and Lyadova, L. 2018. Method for the Development of Rec-
ommendation Systems, Customizable to Domains, with Deep GRU Network.
In Proceedings of the 10th International Joint Conference on Knowledge
Discovery, Knowledge Engineering and Knowledge Management, 2, 231-236.
DOI=10.5220/0006933302310236

[9] Zhou, T., Qian, H., Shen, Z., Zhang, C. Wang, C., Liu, S., and Ou W. 2018. JUMP:
a Jointly Predictor for User Click and Dwell Time. Proceedings of the Twenty-
Seventh International Joint Conference on Artificial Intelligence. DOI= https:
//doi.org/10.24963/ijcai.2018/515.

[10] Kong, F., Li, J., Lv, Z. 2018. Construction of intelligent traffic information recom-
mendation system based on long short-term memory. Journal of Computational
Science, 26, 78-86. DOI= https://doi.org/10.1016/j.jocs.2018.03.010.

[11] Fu H., Li J., Chen J., Tang Y., Zhu J. 2018. Sequence-Based Recommendation with
Bidirectional LSTM Network. Advances in Multimedia Information Processing –
PCM 2018. 11166. DOI= https://doi.org/10.1007/978-3-030-00764-5_39

[12] Ruocco, M., Skrede, O. and Langseth, H.. 2017. Inter-Session Modeling for Session-
Based Recommendation. arXiv e-prints.

[13] Anil, D., Vembar, A., Hiriyannaiah, S., S. G.M. and Srinivasa, K. 2018. Performance
Analysis of Deep Learning Architectures for Recommendation Systems. IEEE
25th International Conference on High Performance Computing Workshops
(HiPCW), 129-136. DOI=https://doi.org/10.1109/HiPCW.2018.8634192.

[14] Keras. 2015. https://keras.io.

http://dx.doi.org/10.1016/j.eswa.2014.07.012
https://doi.org/10.2498/cit.1002223
http://dx.doi.org/10.1145/2843948
http://dx.doi.org/10.1145/2843948
https://doi.org/10.1109/ICIIECS.2017.8276172
https://doi.org/10.1109/ICSPCom.2016.7980578
https://doi.org/10.1109/ICSPCom.2016.7980578
https://doi.org/10.1007/978-0-387-85820-3_21
https://doi.org/10.1007/978-0-387-85820-3_21
https://dl.acm.org/doi/10.1145/2988450.2988452
https://dl.acm.org/doi/10.1145/2988450.2988452
https://doi.org/10.24963/ijcai.2018/515
https://doi.org/10.24963/ijcai.2018/515
https://doi.org/10.1016/j.jocs.2018.03.010
https://doi.org/10.1007/978-3-030-00764-5_39
https://doi.org/10.1109/HiPCW.2018.8634192
https://keras.io

	Abstract
	1 INTRODUCTION
	2 METHODOLOGY
	3 RESULTS
	4 CONCLUSION
	References

